Sabtu, 20 Oktober 2018

GELATIN TULANG DAN KULIT IKAN


GELATIN TULANG DAN KULIT IKAN

Gelatin adalah derivat protein dari serat kolagen yang ada pada kulit, tulang, dan tulang rawan. Proses perubahan kolagen menjadi gelatin melibatkan tiga perubahan berikut (Junianto, dkk, 2006):
  1. Pemutusan sejumlah ikatan peptida untuk memperpendek rantai
  2. Pemutusan atau pengacauan sejumlah ikatan camping antar rantai
  3. Perubahan konfigurasi rantai
Gelatin larut dalam air, asam asetat dan pelarut alkohol seperti gliserol, propilen glycol, sorbitol dan manitol, tetapi tidak larut dalam alkohol, aseton, karbon tetraklorida, benzen, petroleum eter dan pelarut organik lainnya (Junianto, dkk, 2006).

Gelatin tulang ikan
Pada tahap persiapan dilakukan pencucian pada kulit dan tulang. Kulit atau tulang dibersihkan dari sisa-sisa daging, sisik dan lapisan luar yang mengandung deposit-deposit lemak yang tinggi. Untuk memudahkan pembersihan maka sebelumnya dilakukan pemanasan pada air mendidih selama 1-2 menit. Proses penghilangan lemak dari jaringan tulang yang biasa disebut degresing, dilakukan pada suhu antara titik cair lemak dan suhu koagulasi albumin tulang yaitu antara    32-80°C sehingga dihasilkan kelarutan lemak yang optimum (Junianto, dkk, 2006).

Pada tulang, sebelum dilakukan pengembungan terlebih dahulu dilakukan proses demineralisasi yang bertujuan untuk menghilangkan garam kalsium dan garam lainnya dalam tulang, sehingga diperoleh tulang yang sudah lumer disebut ossein. Asam yang biasa digunakan dalam proses demineralisasi adalah asam klorida dengan konsentrasi 4-7%. Proses demineralisasi ini sebaiknya dilakukan dalam wadah tahan asam selama beberpa hari sampai dua minggu (Junianto, dkk, 2006).

Selanjutnya pada kulit dan ossein dilakukan tahap pengembungan (swelling) yang bertujuan untuk menghilangkan kotoran-kotoran dan mengkonversi kolagen menjadi gelatin. Pada tahap ini perendaman dapat dilakukan dengan larutan asam organik seperti asam asetat, sitrat, fumarat, askorbat, malat, suksinat, tartarat dan asam lainnya yang aman dan tidak menusuk hidung. Sedangkan asam anorganik yang biasa digunakan adalah asam hidroklorat, fosfat, dan sulfat. Jenis pelarut alkali yang umum digunakan adalah sodium karbonat, sodium hidroksida, potassium karbonat dan potassium hidroksida (Junianto, dkk, 2006).

Asam mampu mengubah serat kolagen triple heliks menjadi rantai tunggal, sedangkan larutan perendam basa hanya mampu menghasilkan rantai ganda. Hal ini menyebabkan pada waktu yang sama jumlah kolagen yang dihidrolisis oleh larutan asam lebih banyak daripada larutan basa. Karena itu perendaman dalam larutan basa membutuhkan waktu yang lebih lama untuk menghidrolisis kolagen. Menurut Utama (1997), tahapan ini harus dilakukan dengan tepat (waktu dan konsentrasinya) jika tidak tepat akan terjadi kelarutan kolagen dalam pelarut yang menyebabkan penurunan rendemen gelatin yang dihasilkan (Junianto, dkk, 2006).

Tahapan selanjutnya, kulit dan ossein diekstraksi dengan air yang dipanaskan. Ekstraksi bertujuan untuk mengkonversi kolagen menjadi gelatin. Suhu minimum dalam proses ekstraksi adalah 40-50°C hingga suhu 100°C. Ekstraksi kolagen tulang dilakukan dalam suasana asam pada pH 4-5 karena umumnya pH tersebut merupakan titik isoelektrik dari komponen-komponen protein non kolagen, sehingga mudah terkoagulasi dan dihilangkan. Apabila pH lebih rendah perlu penanganan cepat untuk mencegah denaturasi lanjutan (Junianto, dkk, 2006).

Larutan gelatin hasil ekstraksi kemudian dipekatkan terlebih dahulu sebelum dilakukan pengeringan. Pemekatan dilakukan untuk meningkatkan total solid larutan gelatin sehingga mempercepat proses pengeringan. Hal ini dapat dilakukan dengan menggunakan evaporator vakum, selanjutnya dikeringkan dalam oven pada suhu 40-50°C atau 60-70°C. Pengecilan ukuran dilakukan untuk lebih memperluas permukaan bahan sehingga proses dapat berlangsung lebih cepat dan sempurna. Dengan demikian gelatin yang dihasilkan lebih reaktif dan lebih mudah digunakan (Junianto, dkk, 2006).

Urutan proses pembuatan gelatin tulang ikan tuna (Junianto, dkk, 2006):

  1. Tulang ikan
  2. Degreasing (penghilangan lemak)
  3. Direndam pada air mendidih selama 30 menit
  4. Pengecilan ukuran 2-5 cm2
  5. Demineralisasi (perendaman dalam HCl 5%, 48 jam)
  6. Ossein
  7. Pencucian demean air mengalir hingga pH netral (6-7)
  8. Ekstraksi dalam waterbath pada suhu 90°C selama 7 jam
  9. Ekstrak disaring
  10. Dipekatkan dengan evaporator
  11. Dikeringkan dengan oven pada suhu 50°C selama 24 jam
  12. Pengecilan ukuran/penepungan
  13. Gelatin

Gelatin Kulit Ikan
Metode yang digunakan pada ekstraksi gelatin dari ikan tuna ini yaitu metode asam, sedangkan asam yang digunakan yaitu asam sitrat. Kulit ikan dibersihkan dari daging yang masih melekat, kemudian dicuci bersih, dan dibuang sisiknya dan dibersihkan dari daging yang melekat, kemudian dicuci bersih. Kulit yang sudah dicuci direndam dalam campuran larutan kapur dan Natrium sulfida dengan konsentrasi masing-masing 3% dari berat ikan selama 48 jam. Kulit ikan kemudian diangkat dari rendaman, kemudian dicuci bersih dan dibuang sisik dan daging yang masih melekat. Kulit ikan diputar di dalam molen dengan ditambahkan air sebanyak 400% (b/b), dan ammonium sulfat 1% (b/b) selama 30 menit. Kemudian kulit ikan ditambahkan enzim protease 1% (b/b) kemudian diputar kembali selama 2 jam dengan kecepatan 12 rpm. Proses ini disebut proses enzimatis (Dewi, F.R. dan Widodo, 2009).

Proses selanjutnya adalah proses asam. Setelah, melalui proses enzimatis ikan dicuci bersih lalu direndam dengan larutan asam sitrat pH 3 selama 12 jam, dicuci bersih hingga mencapai pH netral atau pH 7. Setelah pH netral tercapai kulit ikan kemudian diektraksi dengan perbandingan air 1:2 pada waterbath dengan suhu 60°C selama 3 jam. Ekstrak disaring menggunakan kapas, kain blacu dan saringan. Ekstrak disimpan dalam chilling room sehingga larutan tersebut menjendal. Gelatin yang sudah menjendal kemudian dimasukkan ke dalam pemanas bersistem evaporasi, yang dapat memekatkan larutan gelatin tersebut. Hasil dari evaporai tersbut dimasukkan ke dalam ekstuder, putar ekstuder sehingga menghasilkan mie-mie gelatin. Pengeringan larutan gelatin dapat dilakukan dengan penggunaan udara kering (terhumidifikasi) dan pemanasan. Pemanasan dilakukan bertahap di bawah 40°C hingga mencapai penurunan kadar air paling tidak 70%. Setelah tercapai suhu pengeringan dinaikan menjadi 50-55°C sampai diperoleh gelatin kering (24-36 jam). Penghalusan dilakukan dengan menggunakan blender sehingga diperoleh granula sebesar gula pasir (Dewi, F.R. dan Widodo, 2009).

Urutan dalam proses pembuatan gelatin kulit ikan tuna (Dewi, F.R. dan Widodo, 2009):

1.      Kulit Ikan Tuna
2.      Pengapuran : Direndam dalam larutan kapur 3%, Na2S 3%, dan air 600% selama 48 jam
3.      Dibersihkan dari sisa daging
4.      Enzimatis : Kulit direndam dalam air 400%, [(NH4)2SO4] 1%, kemudian diputar selama 30 menit. Enzim protease 1% putar kembali 2 jam
5.      Dicuci sampai bersih
6.      Direndam dalam larutan asam sitrat pH 3 selama 12 jam
7.      Dicuci dengan air mengalir sampai pH netral (6-7)
8.      Kulit diekstraksi dengan perbandingan 1:3 dalam waterbath. Selama 2 jam pada suhu   60° C
9.      Filtrat disaring menggunakan kapas, kain blacu dan saringan
10.  Penjendelan dalam ruang pendingin selama 24 jam
11.  Pemekatan menggunakan evaporator
12.  Pengeringan 24-36 jam suhu 45° C-50° C
13.  Pembentukan flake gelatin menggunakan blender

Pemanfaatan limbah tulang ikan sebagai sumber kalsium
Selama ini yang direkomendasikan sebagai sumber kalsium terbaik adalah susu. Tetapi harga susu bagi sebagian masyarakat masih terhitung mahal, oleh karena itu perlu dicari alternatif sumber kalsium yang lebih murah, mudah didapat dan tentu saja mudah diabsorbsi. Kalsium yang berasal dari hewan seperti limbah tulang ikan sampai saat ini belum banyak dimanfaatkan untuk kebutuhan manusia. Tulang ikan merupakan salah satu bentuk limbah dari industri pengolahan ikan yang memiliki kandungan kalsium terbanyak diantara bagian tubuh ikan, karena unsur utama dari tulang ikan adalah kalsium, fosfor dan karbonat. Ikan tuna merupakan komoditas perikanan Indonesia yang banyak menghasilkan devisa (terbesar kedua setelah udang) (Trilaksani, W., et al, 2006).

Peningkatan nilai produksi ikan tuna dari tahun ke tahun menunjukkan nilai yang cukup tajam. Peningkatan volume produksi ini akan meningkatkan volume limbah hasil industri pengolahan tuna tersebut. Pemanfaatan limbah tulang ikan tuna sebagai sumber kalsium merupakan salah satu alternatif dalam rangka menyediakan sumber pangan kaya kalsium sekaligus mengurangi dampak buruk pencemaran lingkungan akibat dari pembuangan limbah industri pengolahan tuna.

Salinitas Air Laut



Air laut mengandung 3,5% garam-garaman, gas-gas terlarut, bahan-bahan organik dan partikel-partikel tak terlarut. Keberadaan garam-garaman mempengaruhi sifat fisis air laut (seperti: densitas, kompresibilitas, titik beku, dan temperatur dimana densitas menjadi maksimum) beberapa tingkat, tetapi tidak menentukannya. Beberapa sifat (viskositas, daya serap cahaya) tidak terpengaruh secara signifikan oleh salinitas.Dua sifat yang sangat ditentukan oleh jumlah garam di laut (salinitas) adalah daya hantar listrik (konduktivitas) dan tekanan osmosis.
Salinitas atau kadar garam pada air bergantung pada beberapa faktor yang mempengaruhi. Itulah sebabnya ada jenis-jenis air berdasarkan pada tingkat salinitas, yakni air tawar dengan kadar garam kurang dari 0,05%, air payau dengan kadar garam dari 0,05 hingga 3%, air saline atau asin dengan kadar garam 3 sampai 5%, dan brine dengan kadar garam melebihi 5%.
Air laut termasuk dalam kategori air saline, dengan salinitas rata-rata sebesar 3,5%. Meskipun secara spesifik dijelaskan bahwa konsentrasi salinitas tiap laut berbeda, rasio antara ion-ion yang berbeda akan selalu tetap. Kondisi ini dibuktikan oleh studi pelayaran H.M.S Challenger yang meneliti ilmiah selama empat tahun dan berakhir pada 1876. Hal ini dikenal dengan Hukum Proporsi Konstan.
Garam-garaman utama yang terdapat dalam air laut adalah klorida (55%), natrium (31%), sulfat (8%), magnesium (4%), kalsium (1%), potasium (1%) dan sisanya (kurang dari 1%) teridiri dari bikarbonat, bromida, asam borak, strontium dan florida. Tiga sumber utama garam-garaman di laut adalah pelapukan batuan di darat, gas-gas vulkanik dan sirkulasi lubang-lubang hidrotermal (hydrothermal vents) di laut dalam.
Secara ideal, salinitas merupakan jumlah dari seluruh garam-garaman dalam gram pada setiap kilogram air laut. Secara praktis, adalah susah untuk mengukur salinitas di laut, oleh karena itu penentuan harga salinitas dilakukan dengan meninjau komponen yang terpenting saja yaitu klorida (Cl). Kandungan klorida ditetapkan pada tahun 1902 sebagai jumlah dalam gram ion klorida pada satu kilogram air laut jika semua halogen digantikan oleh klorida. Penetapan ini mencerminkan proses kimiawi titrasi untuk menentukan kandungan klorida.
Salinitas ditetapkan pada tahun 1902 sebagai jumlah total dalam gram bahan-bahan terlarut dalam satu kilogram air laut jika semua karbonat dirubah menjadi oksida, semua bromida dan yodium dirubah menjadi klorida dan semua bahan-bahan organik dioksidasi. Selanjutnya hubungan antara salinitas dan klorida ditentukan melalui suatu rangkaian pengukuran dasar laboratorium berdasarkan pada sampel air laut di seluruh dunia dan dinyatakan sebagai :

S (o/oo) = 0.03 +1.805 Cl (o/oo) (1902)

Lambang o/oo (dibaca per mil) adalah bagian per seribu. Kandungan garam 3,5% sebanding dengan 35o/oo atau 35 gram garam di dalam satu kilogram air laut.
Persamaan tahun 1902 di atas akan memberikan harga salinitas sebesar 0,03o/oo jika klorinitas sama dengan nol dan hal ini sangat menarik perhatian dan menunjukkan adanya masalah dalam sampel air yang digunakan untuk pengukuran laboratorium. Oleh karena itu, pada tahun 1969 UNESCO memutuskan untuk mengulang kembali penentuan dasar hubungan antara klorinitas dan salinitas dan memperkenalkan definisi baru yang dikenal sebagai salinitas absolut dengan rumus :

S (o/oo) = 1.80655 Cl (o/oo) (1969)

Namun demikian, dari hasil pengulangan definisi ini ternyata didapatkan hasil yang sama dengan definisi sebelumnya.

Definisi salinitas ditinjau kembali ketika tekhnik untuk menentukan salinitas dari pengukuran konduktivitas, temperatur dan tekanan dikembangkan. Sejak tahun 1978, didefinisikan suatu satuan baru yaitu Practical Salinity Scale (Skala Salinitas Praktis) dengan simbol S, sebagai rasio dari konduktivitas. “Salinitas praktis dari suatu sampel air laut ditetapkan sebagai rasio dari konduktivitas listrik (K) sampel air laut pada temperatur 15oC dan tekanan satu standar atmosfer terhadap larutan kalium klorida (KCl), dimana bagian massa KCl adalah 0,0324356 pada temperatur dan tekanan yang sama. Rumus dari definisi ini adalah :

S = 0.0080 – 0.1692 K1/2 + 25.3853 K + 14.0941 K3/2 – 7.0261 K2 + 2.7081 K5/2

Dari penggunaan definisi baru ini, dimana salinitas dinyatakan sebagai rasio, maka satuan o/oo tidak lagi berlaku, nilai 35o/oo berkaitan dengan nilai 35 dalam satuan praktis. Beberapa oseanografer menggunakan satuan “psu” dalam menuliskan harga salinitas, yang merupakan singkatan dari “practical salinity unit”. Karena salinitas praktis adalah rasio, maka sebenarnya ia tidak memiliki satuan, jadi penggunaan satuan “psu” sebenarnya tidak mengandung makna apapun dan tidak diperlukan. Pada kebanyakan peralatan yang ada saat ini, pengukuran harga salinitas dilakukan berdasarkan pada hasil pengukuran konduktivitas.

Salinitas di daerah subpolar (yaitu daerah di atas daerah subtropis hingga mendekati kutub) rendah di permukaan dan bertambah secara tetap (monotonik) terhadap kedalaman. Di daerah subtropis (atau semi tropis, yaitu daerah antara 23,5o – 40oLU atau 23,5o – 40oLS), salinitas di permukaan lebih besar daripada di kedalaman akibat besarnya evaporasi (penguapan). Di kedalaman sekitar 500 sampai 1000 meter harga salinitasnya rendah dan kembali bertambah secara monotonik terhadap kedalaman. Sementara itu, di daerah tropis salinitas di permukaan lebih rendah daripada di kedalaman akibatnya tingginya presipitasi (curah hujan).
Salinitas di permukaan sangkat khas dan bervariasi. Nilai-nilai salinitas pada permukaan dipengaruhi oleh proses fisik yang terjadi di perairan. Salinitas akan meningat karena penguapan dan pembekuan. Salinitas akan menurun akibat intensitas hujan, aliran sungai, dan mencairnya es. Perbedaan antara penguapan dan curah hujan di lintang menyebabkan terjadinya beberapa perbedaan tersebut. Penurunan salinitas permukaan dekat khatulistiwa disebabkan oleh curah hujan yang lebih besar atau tinggi. (Millerro and Sohn, 1992).
Laut yang terisolasi atau tidak terhubung dengan laut lepas akan memiliki salinitas tinggi. Seperti kasus danau garam, Laut Mati, air di dalam danau sebanyak tujuh juta ton air menguap setiap harinya dan membuat endapan garam di dasar semakin banyak.
Laut yang dipengaruhi arus panas, maka salinitasnya akan naik (tinggi). Hal ini berlaku pula sebaliknya, dimana laut yang dipengaruhi arus dingin, maka salinitasnya akan turun (rendah). Semakin banyak terjadi penguapan, maka udara di sekitar menjadi lembab. Maka semakin tinggi pula salinitas air laut.
Kadar garam air laut berubah-ubah akibat pertambahan dan pengurangan molekul-molekul air melalui proses penguapan dan hujan. Salinitas meningkat apabila laju penguapan di sebuah daerah lebih besar daripada hujan. Begitupula sebaliknya. Kondisi tergantung pada garis lintang suatu daerah dan pergantian musim. Pola tersebut dapat dilihat pada daerah dengan garis lintang antara 20° dan 30° sebelah utara dan selatan garis  khatulistiwa. Wilayah tersebut akan memiliki perairan dengan salinitas yang lebih tinggi dari sekitarnya, karena laju penguapan di wilayah tersebut lebih besar daripada jumlah air yang diterima saat hujan.
Tempat-tempat tersebut memiliki sifat yang sama dengan wilayah gurun pasir karena garis lintang yang sama. Selain itu, kadar garam air laut juga dipengarui oleh kondisi setempat. Aliran keluar yang sanat besar dari sistem sungai yang besar dapat menurunkan kadar garam air laut. Salinitas sungai yang sedang mengalami banjir akan menurun secara temporari.

Referensi :                                                                                      
Tomczak, M, An Introduction to Physical Oceanography.
Talley, L, Properties of Seawater.
Prager, Ellen J, and Sylvia A. Earle, The Oceans, McGraw-Hill, 2000.
Pickard and Emery, Descriptive Physical Oceanography
http://oseanografi.blogspot.com/2005/07/salinitas-air-laut.html

Sumber : Yogi Suardi